RAPID COMMUNICATIONS

PHYSICAL REVIEW B 78, 220401(R) (2008)

Almeida-Thouless transition below six dimensions
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The existence of an Almeida-Thouless (AT) instability surface below the upper critical six dimensions is
demonstrated in the generic replica symmetric field theory. Renormalization flows from around the zero-field
fixed point are investigated. By introducing the temperature and magnetic-field dependence of the bare param-
eters, the fate of the AT line can be followed from mean field (d=>) down to d=6—¢.
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Notwithstanding the relative simplicity of the relevant
model postulated by Edwards and Anderson,! the Ising spin-
glass problem has resisted a thorough understanding for de-
cades. Severe frustration makes numerical simulations ex-
tremely hard and computer time consuming, whereas
analytical methods must handle the inhomogenities caused
by the quenched disorder. The model was later extended and
studied on the fully connected lattice by Sherrington and
Kirkpatrick (SK) (Ref. 2); the characterization of the spin-
glass phase by the solution of Parisi (see Ref. 3 for a list of
references) is now unanimously accepted as the true mean-
field theory. This mean-field spin glass proved to be very
complicated; its equilibrium state breaks up to ultrametri-
cally organized ergodic components, commonly called pure
states. This complex phase-space structure survives in an ex-
ternal magnetic field up to a phase boundary called the
Almeida-Thouless (AT) line. Approaching this line from the
paramagnetic side an instability develops: using a replicated
picture,! the diverging spin-glass susceptibility signals the
breakdown of the replica symmetric phase,* and replica sym-
metry breaking develops.

An alternative theory—the so-called droplet picture—
emerged, however, and continues questioning the relevance
of mean-field ideas in finite-dimensional systems.’ In this
theory the glassy phase is much simpler and is limited to
zero field: a convincing conclusion about the existence or
lack of an AT line may resolve a decade long debate about
the structure of the spin-glass phase in the physical dimen-
sions. Recent numerical simulations®’ in three dimensions
essentially excluded the possibility of a transition in a field,
whereas the four-dimensional case remains somewhat am-
biguous (see Ref. 8 for references to earlier works). On the
analytical side, we must mention the scaling considerations
in Ref. 9 and renormalization-group (RG) calculations,!-!2
whereas a leading-order field theoretical computation'3 pro-
vided an AT line above six dimensions. This Rapid Commu-
nication tries to dissolve the misbelief that the AT line dis-
appears below the upper critical dimension by explicitly
calculating it close to but below d=6.

Ising spin-glass transition in an external magnetic field
can be studied in the generic replica symmetric field theoret-
ical model' defined by the Lagrangian £=£®+ £/, where
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The n(n—1)/2 component fields are symmetric in the replica
indices and ¢*“=0); the spin-glass limit requires n— 0. The
total number of spins N is included to ensure the correct
thermodynamic limit, and momentum conservation is under-
stood in the primed summation. The zero-field paramagnetic
phase corresponds to higher symmetry,'> with all the bare
parameters but with m; and w, equal to zero; it has a unique
mass I', and below the upper critical dimension d,=6 the
spin-glass transition is governed by the fixed point'® w}?
=w"?=¢€/(2-n) and m;=—€/2, e=6—d. The mass is split by
an external magnetic field into the three different compo-
nents I'g, I'y, and I';, thus generating—while replica symme-
try is still preserved—a kind of quadratic symmetry break-
ing. The crossover region is best studied by the introduction
of the nonlinear scaling fields'”? satisfying the exact renor-
malization flows g;=N\,g;. [The \;s of the mass sector
(i=1,2,3) were computed from the renormalization flow
equations, in leading order, in Ref. 18.] The RG equations
provide a way to express the bare parameters of the Lagrang-
ian in terms of the scaling fields; hence the masses can be
computed as functions of the g;’s,

Fr=g1+2g,+g3+0(e),
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Fy=g1-(n-4)g,—(n-3)g3+ O(e),

(n-2)(n-3)

) g;+0(e).  (3)

I =g,-2(n-2)g,+

The O(e) terms neglected above have two contributions: the
one-loop self-energy (which is computable at that order) and
corrections to the bare masses expressed in terms of the
g;’s—this, however, is not available in a leading-order RG
calculation. Couplinglike scaling fields g;’s with i>3 enter
also at this O(e) level. Equation (3) can be derived by fixing
the bare parameters such that <¢pB »=0; this condition deter-
mines g, unambiguously in terms of the other g,’s. Two criti-
cal surfaces can be found from Eq. (3) in the low-
temperature (g, <0) regime: (i) [',=0 and I'y and I'; are
both positive—i.e., an Almeida-Thouless instability—for g,
<—g, and (ii) I'y=0 and I'; and 'y are positive (n=0) for
g>>-g;. The common boundary of these two manifolds
(which are two dimensions now, but allowing for coupling-
like scaling fields g;, i>3, they will have a complicated
higher dimensional structure) for g,=—g; is massive only in
the longitudinal sector.!!

We are now interested in the RG flows along the AT in-
stability surface when starting in the crossover region. The
first-order RG equations were all presented in Ref. 18; their
structure is best displayed by the following (temporary) re-
definition of the couplings: w;/\e— w;, which are now, like

the masses, order unity. With the scaling factor e/ and ¢
=el,
dm;
5:2111 eM(my,my,ms;wy, ...,wg), i=1,2,3,
4)
L ) i=1,...8
— = —w; + Wi(m,my,myiwy, ..., wg), i=1,....8.
2 1,10, 33 W) 8
(5)

The M; and W, functions are quadratic and cubic, respec-
tively, in the couplings. The most important feature of the
RG equations above is that the flow parameter / in the mass
sector [Eq. (4)] is much larger for €<1 than t of the cou-
plings [Eq. (5)]. Thus the masses renormalize in the back-
ground of the adiabatically slow couplings: the anomalous
(A) and longitudinal (L) components, as they are O(1) on the
AT surface, blow up, whereas the replicon (R) one, 2m,
=0(e), evolves into its adiabatic fixed point determined by
the initial values of the couplings w%* and w)*. While w{*
=w;(t=0)=w], we must carefully follow the development of
w, in the transient regime from w,(r=0)=0 (Ref. 21) to
w(2)+:w2(t) with e<r<<1 for the following reason: for /> 1,
, t>¢€, w; and w, decouple from the other bare param-
eters, and their flow can be put into the pair of equations

dWl 1
5 vt 2wy,
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where g,(r) and h,(r) are cubic and quartic polynomials of r
with coefficients which are simple polynomials of n and r
=w,/w,. For the case n=0, these equations were derived
and discussed in Ref. 10. We are now interested in the more
generic case 0 =n =< € and observe that the qualitative behav-
ior of the renormalization flow changes drastically when the
initial value of r(0)=w5"/wi* passes through rj=7n
+0(n?), with the unstable fixed point 7} being the solution of
the equation h,(r)=0. For r(0) > r|, we have runaway trajec-
tories already noticed in Ref. 10 with w;—% and r—r,
=14.4+0(n); whereas for r(0)<rj, w, immediately be-
comes negative, which is physically nonsense.

To get r(0), we must integrate Eq. (5) for i=2 in the
transient regime from t=0 to e<<t<<1, thereby eliminating
nonreplicon modes in the process of hardening anomalous
and longitudinal masses. This is feasible using Eq. (65) of
Ref. 18 together with the table between the different sets of
couplings in Eq. (49) of Ref. 14, resulting in r(0)<r| for
0<n<1 and starting close enough to the zero-field fixed
point, whereas the spin-glass case is exceptional with the
condition (0) > r} always fulfilled.

Runaway flows along critical surfaces have been associ-
ated with first-order transitions in some common situations
with crossover phenomena,19 and although this scenario can-
not be ruled out completely for the spin glass either, we will
argue that renormalization of the bare couplings on the AT
surface toward their low-temperature limit may cause the
runaway trajectories in this renormalization scheme. To see
this, we recall the derivation of the microscopic Lagrangian
in Ref. 14 and the necessity to redefine the fields as c(ﬁ“ﬁ
— ¢°‘B with ¢~ T, to ensure the proper normalization of the
k1net1c term in L<2) This will cause the couplings to diverge
even if they disappeared for 7— 0 otherwise. That kind of
normalization was essential in the derivation of Egs. (4) and
(5), manifested in the flowing # exponents of the three dif-
ferent mass modes. As our approximate RG equations are
valid only for w;=O(1), one probably needs to modify the
RG scheme for detecting the proper zero-temperature behav-
ior on the AT surface in this small € regime. This is, however,
out of the scope of the present work.

In the remaining part of this Rapid Communication we
want to locate the AT line of the original Edwards-Anderson
spin-glass model' on the AT surface of the field theory
above. For this reason, we must find out the dependence of
the bare parameters in Egs. (1) and (2) on temperature (7)
and magnetic field (H). The criterion which is adopted here
is that the tree approximation of the field theory (i.e., ne-
glecting loops) be equivalent with the accepted mean-field
theory of the Ising spin glass, the SK model, whose repli-
cated partition function has the form?

2
?fvfl?q exp{—N{%E Qiﬁ_ln é’]}, (6)
a<f3

where
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{=Tr exp( > anS“Sﬁ+ —2 S"‘) (7)
59 \a<p kT

IDg= Ha<ﬂ(fN1/2\2kTJ
Gaussian distribution of the random Ismg interactions, sets
the energy scale. In the tree approximation ﬂuctuatlons are
omitted, Wthh can be achieved by setting qﬁ“ﬁ = quaﬁ and
zero for ¢ o in Egs. (1) and (2) and comparing it with Egs.
(6) and (7]3 Not forgetting that the bare parameters of the
field theory are finally tuned by the transformation ¢“ﬁ
—\NqﬁKI — qb P_rendering the one-point function to
Zero—where q is the exact replica symmetric order param-
eter, they are expressed by 7 and H in the vicinity of the
mean-field critical point k7™=J as follows:

wh=%uﬂknz—Onn—7qu%*%m—2ﬂww2+

my = (my,— 1)+ (wq) + (H/KT)?

1 1 1
- qu Ugy + Upy + g(n = Dugs + 5”(" = Dugg |-+,

1
my =~ (wq) — (H/KT)* - 5612[(” = 3ug +ugz] + -+,

1
my=— 892[1401 +2upy] + -0,

wi=w+O0(q,HY), w;=0(q,H?), i=2,...,8. (8)

Neglected terms above are higher orders in ¢ and H”. The
quartic couplings are not included here, although their calcu-
lation is similarly straightforward, and they may be impor-
tant above eight dimensions. 7>>0 measures the distance
from the critical temperature of the field theory (7.), whereas
mlc=—2k—;2(T?f2—Tf) gives the shift in the critical tempera-
ture, and is therefore one-loop order. The field theory is de-
fined by 7, (H/kT)? and by the bare parameters of the sym-
metrical theory (zero magnetic-field paramagnet): w (cubic
coupling), ug;, Ugp, g3, Uos (quartic couplings), etc. (see Ref.
20 for the classification of the quartic couplings). To repro-
duce the SK model results in the tree approximation, we
must set w=1, ug; =3, up=2, uy=—06, and uy,=0.

The condition (g{)gﬁ):O provides us the equation of state,
i.e., the order parameter ¢ around 7; it is used here to elimi-
nate 7 from our results, replacing it by g. The calculation of
the one-loop contribution to the equation of state and to the
replicon mass is somewhat lengthy due to the complicated
replica structure even in the case of replica symmetry. Nev-
ertheless, it is still feasible by the methods in Ref. 14. The
result valid for d>8, including the SK model by simply
taking d=00, can be put into the scaling form

(H/KT)? _n
wg)® " 7 (wq)

Ti=(wg)Thlx,y), x= (9)

The scaling function fR has the simple linear form
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Cr(x,y)=ax+by+c, d>6, (10)

with a and b analytical down to four and six dimensions,

respectively, and having their loop expansions in terms of
_ 1Al

L=32 s

a=1- 2w214,

b=1 —2W216+(— u10+u30+4u40)14, d>6. (11)

However, ¢ blows up at eight dimensions due to the infrared
divergence developing in the first-order contribution behind
the mean-field term,

2
c=- 5“20W_2 — 16w?Ig + terms with /g and I,, d > 8.

(12)

As a result, scaling of the replicon mass turns to the follow-
ing form when 6 <d<8:

Tg=(wg) " Tp(x,y), (13)

with x= (H/kT)*/(wq)¥*" and y=n/(wq)¥>>3. The scaling
function preserves form (10) with a and b in Eq. (11); the
constant ¢, however, becomes, instead of Eq. (12),

? dip 1

= — 16w? —_
Q@) p*(p* +2)?

6<d<8. (14)

The zeros of the scaling function provide the AT transi-
tions, and two important cases can be studied for d>6: (i)
H=0, i.e., x=0 and y=—c/b (this case has been discussed in
Ref. 20) and (ii) the spin-glass limit n=0, i.e., y=0 and x
=xo=—c/a. The AT line close to T, in the two regimes is

(HIKT)* =xo(wq)’, 8 <d,

(HIKT)? = xo(wg)™*™!, 6<d<S8. (15)

From Egs. (11) and (12), with u,,=2, the SK value x,=4/3
is reproduced, whereas x, becomes one-loop order for 6
<d<8 [see Eq. (14)].

Below six dimensions, the leading scaling behavior can
be obtained by using fixed-point values in Eq. (8) and also
neglecting correction terms provides

w'h = %(H/kT)2 - (m]-1(w*q) + %(n -2)(w'q)?,

my =mT -7+ (W'q), my=—Ww'q), m3=0,

wi=w", w;=0, i=2,...,8.

After eliminating 7 by the equation of state, we are left with
a two-parameter theory, with the simple RG flows close to
the fixed point,

= (2—-€2+752)q, (HIKT)> = No(HIKT)?, (16)

with N\g=4—€/2—17"/2 and 7"=—¢€/3. The scaling fields can
now be expressed as

= (W'q)gi(x),
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4—€2-772

22—+ 72

(H/KT)?
X=—"—">"s,

(w'q)°
From Eq. (16) it follows that x is invariant under renormal-

ization and z; is equal to (2—e/2+ 77°/2)7!\; for ¢,=\,g; must
be satisfied. Any observable O satisfying the approximate

RG flows @2k00 around the fixed point can now be writ-

ten as O~ (w*q)k0'@=¢2+772) (imes a function of x. For a
mass k=2-17"=(5—1)(2—€/2+ 7%°/2), and therefore the rep-
licon mass takes the scaling form

_ (HIkT)?

(w'q)?
The most important feature of Eq. (17) when compared with
the d>6 cases [Egs. (9) and (13)] is the lack of the second
scaling variable, which is proportional to n. The AT line ends

now in the zero-field critical point??> even for small n but
nonzero,

(HIKT)? = xo(w*q)°,

Tp= W) Tix), x (17)

xo=—n+[2+0(n)]e+0(e),
(18)

and it disappears completely for n>2e.
To conclude, we followed the fate of the AT line from
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FIG. 1. (Color online) AT lines on the two sides of the upper
critical six dimensions [see Egs. (15) and (18) and footnote (Ref.
22)].

mean field down to d=6-¢€. (See Fig. 1 for the cases just
above and below six dimensions.) An exceptional feature of
the spin-glass case (n=0) is that the runaway flows toward
zero-temperature behavior—found below d=6—originate in
the close vicinity of the zero-field fixed point. Our results do
not exclude a possible lack of the AT surface in d=3—as
suggested by recent numerical works®’—a scenario, with
some lower critical dimension to explain this, that has been
suggested in Ref. 20.
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